
Published on LabJack (https://labjack.com)

Home > Support > Datasheets > U6 Datasheet > 2 - Hardware Description > 2.9 - Timers/Counters

2.9 - Timers/Counters [U6 Datasheet]
Log in or register to post comments

Timers / Counters Overview

The U6 has 4 timers (Timer0-Timer3) and 2 counters (Counter0-Counter1). When any of these
timers or counters are enabled, they take over an FIO/EIO line in sequence (Timer0, Timer1,
Timer2, Timer3, Counter0, then Counter1), starting with FIO0+TimerCounterPinOffset. The valid
range for TimerCounterPinOffset is 0-8, so Timer0 can appear on FIO0-EIO0, and the highest I/O
ever used would be EIO5 for Counter1 if all 4 timers and both counters are enabled. Some
examples:

1 Timer enabled, Counter0 disabled, Counter1 disabled, and TimerCounterPinOffset=0:
FIO0=Timer0

1 Timer enabled, Counter0 disabled, Counter1 enabled, and TimerCounterPinOffset=0:
FIO0=Timer0
FIO1=Counter1

2 Timers enabled, Counter0 enabled, Counter1 enabled, and TimerCounterPinOffset=8:
EIO0=Timer0
EIO1=Timer1
EIO2=Counter0
EIO3=Counter1

Timers and counters can appear on various pins, but other I/O lines never move. For example,
Timer1 can appear anywhere from FIO1 to EIO1, depending on TimerCounterPinOffset. On the
other hand, FIO2 (for example), is always on the screw terminal labeled FIO2.

Applicable digital I/O are automatically configured as input or output as needed when timers and counters are enabled,

and stay that way when the timers/counters are disabled.

Timers and counters use digital I/O hardware so the digital I/O specs from Appendix A apply. An input recognizes 0.0-
0.8V as low and 2.0-5.8V as high, so rising and falling edges must transition between those levels. For more
information about signal connections see Section 2.8.1.

There are special channels numbers that can be used to read timer and counter values. These channel numbers can
be used most places where you would use analog input channel numbers, such as LJLogUD and LJStreamUD.
 See Section 3.2.1 for more information.

19 May 2019

https://labjack.com
https://labjack.com/
https://labjack.com/support
https://labjack.com/support/datasheets
https://labjack.com/support/datasheets/u6
https://labjack.com/support/datasheets/u6/hardware-description
https://labjack.com/user/login?destination=node/694%23comment-form
https://labjack.com/user/register?destination=node/694%23comment-form
https://labjack.com/support/datasheets/u6/appendix-a
https://labjack.com/support/u6/users-guide/2.8.1
https://labjack.com/support/datasheets/u6/operation/stream-mode/streaming-inputs-timers-counters

Timers

The timers (Timer0-Timer3) have various modes available. These are listed in the following table and more

details can be found in Section 2.9.1.

Table 2.9-1. U6 Timer modes

Index (Low-level & UD)
0 16-bit PWM output
1 8-bit PWM output
2 Period input (32-bit, rising edges)
3 Period input (32-bit, falling edges)
4 Duty cycle input
5 Firmware counter input

6
Firmware counter input (with
debounce)

7 Frequency output
8 Quadrature input
9 Timer stop input (odd timers only)

10
System timer low read (Default
mode)

11 System timer high read
12 Period input (16-bit, rising edges)
13 Period input (16-bit, falling edges)
14 Line-to-Line input

All timers use the same timer clock. There are 7 choices for the timer base clock:

Table 2.9-2. U6 Timer clock base options

Index (Low-level/UD)
0/20 4 MHz
1/21 12 MHz
2/22 48 MHz (Default)
3/23 1 MHz /Divisor
4/24 4 MHz /Divisor
5/25 12 MHz /Divisor
6/26 48 MHz /Divisor

The first 3 clocks have a fixed frequency, and are not affected by TimerClockDivisor. The
frequency of the last 4 clocks can be further adjusted by TimerClockDivisor, but when using
these clocks Counter0 is not available. When Counter0 is not available, it does not use an

19 May 2019

https://labjack.com/support/datasheets/u6/hardware-description/timers-counters/mode-descriptions

external FIO/EIO pin. The divisor has a range of 0-255, where 0 corresponds to a division of 256.

Counters

Each counter (Counter0 or Counter1) consists of a 32-bit register that accumulates the number of falling edges detected

on the external pin. If a counter is reset and read in the same function call, the read returns the value just before the

reset.

Note that Counter0 is not available with certain timer clock base frequencies. In such a case, it does not use an

external FIO/EIO pin. An error will result if an attempt is made to enable Counter0 when one of these frequencies is

configured. Similarly, an error will result if an attempt is made to configure one of these frequencies when Counter0 is

enabled.

2.9.1 - Timer Mode Descriptions [U6
Datasheet]
Log in or register to post comments

2.9.1.1 - PWM Output (16-Bit, Mode 0) [U6
Datasheet]
Log in or register to post comments

Outputs a pulse width modulated rectangular wave output. Value passed should be 0-65535, and
determines what portion of the total time is spent low (out of 65536 total increments). That means
the duty cycle can be varied from 100% (0 out of 65536 are low) to 0.0015% (65535 out of 65536
are low).

The overall frequency of the PWM output is the clock frequency specified by
TimerClockBase/TimerClockDivisor divided by 216. The following table shows the range of
available PWM frequencies based on timer clock settings.

Table 2.9.1.1-1. 16-bit PWM Frequency Ranges

PWM16 Frequency
Ranges

TimerClockBase Divisor=1 Divisor=256
0 4 MHz 61.04 N/A

19 May 2019

https://labjack.com/user/login?destination=node/828%23comment-form
https://labjack.com/user/register?destination=node/828%23comment-form
https://labjack.com/user/login?destination=node/1181%23comment-form
https://labjack.com/user/register?destination=node/1181%23comment-form

1 12 MHz 138.11 N/A
2

48 MHz
(Default) 732.42 N/A

3
1 MHz
/Divisor

15.26 0.06

4
4 MHz
/Divisor

61.04 0.238

5
12 MHz
/Divisor

183.11 0.715

6
48 MHz
/Divisor

732.42 2.861

The same clock applies to all timers, so all 16-bit PWM channels will have the same frequency
and will have their falling edges at the same time.

PWM output starts by setting the digital line to output-low for the specified amount of time. The
output does not necessarily start instantly, but rather has to wait for the internal clock to roll. For
16-bit PWM output, the start delay varies from 0.0 to TimerClockDivisor*65536/TimerClockBase.
For example, if TimerClockBase = 48 MHz and TimerClockDivisor = 1, PWM frequency is 732 Hz,
PWM period is 1.4 ms, and the start delay will vary from 0 to 1.4 ms.

If a duty cycle of 0.0% (totally off) is required, consider using a simple inverter IC such as the
CD74ACT540E from TI. Or you can switch the mode of the timer to some input mode, and add an
external pull-down to hold the line low when set to input.

2.9.1.2 - PWM Output (8-Bit, Mode 1) [U6
Datasheet]
Log in or register to post comments

Outputs a pulse width modulated rectangular wave output. Value passed should be 0-65535, and
determines what portion of the total time is spent low (out of 65536 total increments). The lower
byte is actually ignored since this is 8-bit PWM. That means the duty cycle can be varied from
100% (0 out of 65536 are low) to 0.4% (65280 out of 65536 are low).

The overall frequency of the PWM output is the clock frequency specified by
TimerClockBase/TimerClockDivisor divided by 28. The following table shows the range of
available PWM frequencies based on timer clock settings.

Table 2.9.1.2-1. 8-bit PWM Frequency Ranges

PWM8 Frequency
Ranges

TimerClockBase Divisor=1 Divisor=256

19 May 2019

https://labjack.com/user/login?destination=node/1182%23comment-form
https://labjack.com/user/register?destination=node/1182%23comment-form

0 4 MHz 15625 N/A1 12 MHz 46875 N/A

2
48 MHz
(Default)

187500 N/A

3
1 MHz
/Divisor

3906.25 15.259

4
4 MHz
/Divisor

15625 61.035

5
12 MHz
/Divisor

46875 183.105

6
48 MHz
/Divisor

187500 732.422

The same clock applies to all timers, so all 8-bit PWM channels will have the same frequency and
will have their falling edges at the same time.

PWM output starts by setting the digital line to output-low for the specified amount of time. The
output does not necessarily start instantly, but rather has to wait for the internal clock to roll. For
8-bit PWM output, the start delay varies from 0.0 to TimerClockDivisor*256/TimerClockBase. For
example, if TimerClockBase = 48 MHz and TimerClockDivisor = 256, PWM frequency is 732 Hz,
PWM period is 1.4 ms, and the start delay will vary from 0 to 1.4 ms.

If a duty cycle of 0.0% (totally off) is required, consider using a simple inverter IC such as the
CD74ACT540E from TI. Or you can switch the mode of the timer to some input mode, and add an
external pull-down to hold the line low when set to input.

2.9.1.3 - Period Measurement (32-Bit, Modes
2 & 3) [U6 Datasheet]
Log in or register to post comments

Mode 2: On every rising edge seen by the external pin, this mode records the number of clock
cycles (clock frequency determined by TimerClockBase/TimerClockDivisor) between this rising
edge and the previous rising edge. The value is updated on every rising edge, so a read returns
the time between the most recent pair of rising edges.

In this 32-bit mode, the processor must jump to an interrupt service routine to record the time, so small errors can occur

if another interrupt is already in progress. The possible error sources are:

Other edge interrupt timer modes (2/3/4/5/8/9/12/13). If an interrupt is already being
handled due to an edge on the other timer, delays of a few microseconds are possible.
If a stream is in progress, every sample is acquired in a high-priority interrupt. These
interrupts could cause delays on the order of 10 microseconds.
The always active U6 system timer causes an interrupt 61 times per second. If this interrupt

19 May 2019

https://labjack.com/user/login?destination=node/1183%23comment-form
https://labjack.com/user/register?destination=node/1183%23comment-form

happens to be in progress when the edge occurs, a delay of about 1 microsecond is
possible. If the software watchdog is enabled, the system timer interrupt takes longer to
execute and a delay of a few microseconds is possible.

Note that the minimum measurable period is limited by the edge rate limit discussed in Section 2.9.2.

See Section 3.2.1 for a special condition if stream mode is used to acquire timer data in this mode.

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will return zero until a new

edge is detected. If a timer is reset and read in the same function call, the read returns the value just before the reset.

Mode 3 is the same except that falling edges are used instead of rising edges.

Edge Rate Limits

This edge-detecting timer mode requires processing resources as an interrupt is required to handle each edge. See

more about edge rate limits in Section 2.9.2.

2.9.1.4 - Duty Cycle Measurement (Mode 4)
[U6 Datasheet]
Log in or register to post comments

Records the high and low time of a signal on the external pin, which provides the duty cycle, pulse width, and period of
the signal. Returns 4 bytes, where the first two bytes (least significant word or LSW) are a 16-bit value representing the
number of clock ticks during the high signal, and the second two bytes (most significant word or MSW) are a 16-bit
value representing the number of clock ticks during the low signal. The clock frequency is determined by
TimerClockBase/TimerClockDivisor.

The appropriate value is updated on every edge, so a read returns the most recent high/low times. Note that a duty
cycle of 0% or 100% does not have any edges.

To select a clock frequency, consider the longest expected high or low time, and set the clock frequency such that the
16-bit registers will not overflow. In other words, to measure 0% to 100% duty cycle for a given signal frequency, you
need to set your clock frequency low enough such that the overall period of the signal is less than 65535 *
1/TimerClockFrequency. That equates to:

fclock ≤ 65535 * fsignal

Note that the minimum measurable high/low time is limited by the edge rate limit discussed in Section 2.9.2.

When using the LabJackUD driver the value returned is the entire 32-bit value. To determine the high and low time this
value should be split into a high and low word. One way to do this is to do a modulus divide by 2^16 to determine the

19 May 2019

https://labjack.com/support/datasheets/u6/operation/stream-mode/streaming-inputs-timers-counters
https://labjack.com/support/datasheets/u6/hardware-description/timers-counters/operation-notes
https://labjack.com/user/login?destination=node/1184%23comment-form
https://labjack.com/user/register?destination=node/1184%23comment-form
https://labjack.com/support/datasheets/u6/hardware-description/timers-counters/operation-notes

LSW, and a normal divide by 2^16 (keep the quotient and discard the remainder) to determine the MSW.

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will return zero until a new
edge is detected. If a timer is reset and read in the same function call, the read returns the value just before the reset.
 The duty cycle reset is special, in that if the signal is low at the time of reset, the high-time/low-time registers are set to
0/65535, but if the signal is high at the time of reset, the high-time/low-time registers are set to 65535/0. Thus if no
edges occur before the next read, it is possible to tell if the duty cycle is 0% or 100%.

Edge Rate Limits

This edge-detecting timer mode requires processing resources as an interrupt is required to handle each edge. See
more about edge rate limits in Section 2.9.2.

2.9.1.5 - Firmware Counter Input (Mode 5) [U6
Datasheet]
Log in or register to post comments

On every rising edge seen by the external pin, this mode increments a 32-bit register. Unlike the
pure hardware counters, these timer counters require that the firmware jump to an interrupt
service routine on each edge.

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will
return zero until a new edge is detected. If a timer is reset and read in the same function call, the
read returns the value just before the reset.

Edge Rate Limits

This edge-detecting timer mode requires processing resources as an interrupt is required to handle each edge. See

more about edge rate limits in Section 2.9.2.

2.9.1.6 - Firmware Counter Input With
Debounce (Mode 6) [U6 Datasheet]
Log in or register to post comments

19 May 2019

https://labjack.com/support/datasheets/u6/hardware-description/timers-counters/operation-notes
https://labjack.com/user/login?destination=node/1171%23comment-form
https://labjack.com/user/register?destination=node/1171%23comment-form
https://labjack.com/support/datasheets/u6/hardware-description/timers-counters/operation-notes
https://labjack.com/user/login?destination=node/1185%23comment-form
https://labjack.com/user/register?destination=node/1185%23comment-form

Intended for frequencies less than 10 Hz, this mode adds a debounce feature to the firmware
counter, which is particularly useful for signals from mechanical switches. On every applicable
edge seen by the external pin, this mode increments a 32-bit register. Unlike the pure hardware
counters, these timer counters require that the firmware jump to an interrupt service routine on
each edge.

The debounce period is set by writing the timer value. The low byte of the timer value is a number from 0-255 that

specifies a debounce period in 16 ms increments (plus an extra 0-16 ms of variability):

Debounce Period = (0-16 ms) + (TimerValue * 16 ms)

In the high byte (bits 8-16) of the timer value, bit 0 determines whether negative edges (bit 0 clear) or positive edges (bit

0 set) are counted.

Assume this mode is enabled with a value of 1, meaning that the debounce period is 16-32 ms and negative edges will

be counted. When the input detects a negative edge, it increments the count by 1, and then waits 16-32 ms before re-

arming the edge detector. Any negative edges within the debounce period are ignored. This is good behavior for a

normally-high signal where the switch closure causes a brief low signal (Section 2.8.1.3). The debounce period can be

set long enough so that bouncing on both the switch closure and switch open is ignored.

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will return zero until a new

edge is detected. If a timer is reset and read in the same function call, the read returns the value just before the reset.

Edge Rate Limits

This edge-detecting timer mode requires processing resources as an interrupt is required to handle each edge. See

more about edge rate limits in Section 2.9.2.

2.9.1.7 - Frequency Output (Mode 7) [U6
Datasheet]
Log in or register to post comments

Outputs a square wave at a frequency determined by TimerClockBase/TimerClockDivisor divided
by 2*Timer#Value. The Value passed should be between 0-255, where 0 is a divisor of 256. By
changing the clock configuration and timer value, a wide range of frequencies can be output, as
shown in the following table:

Table 2.9.1.7-1. Mode 7 Frequency Ranges

19 May 2019

https://labjack.com/support/datasheets/u6/hardware-description/dio/typical-dio/mechanical-switch-closure
https://labjack.com/support/datasheets/u6/hardware-description/timers-counters/operation-notes
https://labjack.com/user/login?destination=node/1173%23comment-form
https://labjack.com/user/register?destination=node/1173%23comment-form

 Mode 7 Frequency
Ranges

 Divisor=1 Divisor=1
TimerClockBase Value =1 Value = 256
0 4 MHz 2000000 7812.5
1 12 MHz 6000000 23437.5

2
48 MHz
(Default)

24000000 93750

 Divisor=1 Divisor=256
 Value =1 Value = 256

3
1 MHz
/Divisor

500000 7.629

4
4 MHz
/Divisor

2000000 30.518

5
12 MHz
/Divisor

6000000 91.553

6
48 MHz
/Divisor

24000000 366.211

The frequency output has a -3 dB frequency of about 10 MHz on the FIO lines. Accordingly, at
high frequencies the output waveform will get less square and the amplitude will decrease.

The output does not necessarily start instantly, but rather has to wait for the internal clock to roll.
For the Frequency Output mode, the start delay varies from 0.0 to
TimerClockDivisor*256/TimerClockBase. For example, if TimerClockBase = 48 MHz and
TimerClockDivisor = 256, the start delay will vary from 0 to 1.4 ms.

2.9.1.8 - Quadrature Input (Mode 8) [U6
Datasheet]
Log in or register to post comments

Requires 2 timer channels used in adjacent pairs (0/1 or 2/3). Even timers will be quadrature
channel A, and odd timers will be quadrature channel B. Timer#Value passed has no effect. The
U6 does 4x quadrature counting, and returns the current count as a signed 32-bit integer (2’s
complement). The same current count is returned on both even and odd timer value parameters.

Writing a value of zero to either or both timers performs a reset of both. After reset, a read of
either timer value will return zero until a new quadrature count is detected. If a timer is reset and
read in the same function call, the read returns the value just before the reset.

19 May 2019

https://labjack.com/user/login?destination=node/1186%23comment-form
https://labjack.com/user/register?destination=node/1186%23comment-form

4X Counting

Quadrature mode uses the very common 4X counting method, which provides the highest
resolution possible. That means you get a count for every edge (rising & falling) on both phases
(A & B). Thus if you have an encoder that provides 32 PPR, and you rotate that encoder forward
1 turn, the timer Value register will be incremented by +128 counts.

Z-Phase Support

Quadrature mode supports Z-Phase. When enabled this feature will set the count to zero when
the specified IO line sees a logic high.

Z-phase is controlled by the value written to the timer during initialization. To enable z-phase
support set bit 15 to 1 and set bits 0 through 4 to the DIO number that Z is connected to. EG: for a
Z-line on EIO3 set the timer value to 0x800B or 32779. This value should be sent to both the A
and B timers.

Note that the LabJack will only check Z when it sees an edge on the A or B lines.

Z-phase support requires Firmware 1.14+.

2's Complement

Other timer modes return unsigned values, but this timer mode is unique in that it returns a signed
value from -2147483648 to +2147483647. That is, a 32-bit 2's complement value. When you do
a timer value read and get back a single float from the UD driver, the math is already done and
you get back a value from -2147483648.0 to +2147483647.0, but when using the special
channels 20x/23x/224 you get the LSW and MSW separately and have to do the math yourself.
Search for 2's complement math for your particular programming language.

In a language such as C++, you start by doing using unsigned 32-bit variables & constants to
compute Value = (MSW * 65536) + LSW. Then simply cast Value to a signed 32-bit integer.

In a language such as Java that does not support unsigned integers, do everything with signed
64-bit variables & constants. First calculate Value = (MSW * 65536) + LSW. If Value <
2147483648, you are done. If Value >= 2147483648, do ActualValue = -1 * (4294967296 -
Value).

Edge Rate Limits

This edge-detecting timer mode requires processing resources as an interrupt is required to handle each edge. See
more about edge rate limits in Section 2.9.2.

19 May 2019

http://en.wikipedia.org/wiki/Two%27s_complement
https://labjack.com/support/datasheets/u6/hardware-description/timers-counters/operation-notes

Can I Use a Simple Counter Instead?

If you need to track absolute position with changing direction (forward & reverse), you need to use the timer feature
described above to decode quadrature signals, as the relationship between edges on the A & B phases indicates
direction. However, if movement is only in one direction, or you always know the direction of movement, you can just
connect one phase (A or B) to a hardware counter (2 available on the U3) or firmware counter (2 available on the U3).
 Hardware counters can handle much faster edge rates (up to 8 MHz per Appendix A). Firmware counters have the
same edge rate limits as quadrature, but the firmware counter is counting 1/4th the edges of a quadrature timer and thus
can handle a signal with 4x the frequency, and also is only using 1 timer rather than 2.

2.9.1.9 - Timer Stop Input (Mode 9) [U6
Datasheet]
Log in or register to post comments

This mode should only be assigned to Timer1 or Timer3. On every rising edge seen by the
external pin, this mode increments a 16-bit register. When that register matches the specified
timer value (stop count value), the adjacent even timer (Timer0 or Timer2) is stopped. The range
for the stop count value is 1-65535. Generally, the signal applied to TimerOdd is from
TimerEven, which is configured in some output timer mode. One place where this might be
useful is for stepper motors, allowing control over a certain number of steps.

Note that the timer is counting from the external pin like other input timer modes, so you must
connect something to the stop timer input pin. For example, if you are using Timer1 to stop
Timer0 which is outputting pulses, you must connect a jumper from Timer0 to Timer1.

Once this timer reaches the specified stop count value, and stops the adjacent timer, the timers
must be reconfigured to restart the output.

When TimerEven is stopped, it is still enabled but just not outputting anything. Thus rather than
returning to whatever previous digital I/O state was on that terminal, it goes to the state “digital-
input” (which has a 100 kΩ pull-up to 3.3 volts). That means the best results are generally
obtained if the terminal used by TimerEven was initially configured as digital input (factory
default), rather than output-high or output-low. This will result in negative going pulses, so if you
need positive going pulses consider using a simple inverter IC such as the CD74ACT540E from
TI.

The MSW of the read from this timer mode returns the number of edges counted, but does not
increment past the stop count value. The LSW of the read returns edges waiting for.

Edge Rate Limits

19 May 2019

https://labjack.com/support/datasheets/u6/hardware-description/timers-counters
https://labjack.com/support/datasheets/u6/hardware-description/timers-counters/firmware-counter-input
https://labjack.com/support/datasheets/u6/appendix-a
https://labjack.com/user/login?destination=node/1188%23comment-form
https://labjack.com/user/register?destination=node/1188%23comment-form

This edge-detecting timer mode requires processing resources as an interrupt is required to handle each edge. See

more about edge rate limits in Section 2.9.2.

2.9.1.10 - System Timer Low/High Read
(Modes 10 & 11) [U6 Datasheet]
Log in or register to post comments

The LabJack U6 has a free-running internal 64-bit system timer with a frequency of 4 MHz. Timer
modes 10 & 11 return the lower or upper 32-bits of this timer. An FIO line is allocated for these
modes like normal, even though they are internal readings and do not require any external
connections. This system timer cannot be reset, and is not affected by the timer clock.

If using both modes 10 & 11, read both in the same low-level command and read 10 before 11.

Mode 11, the upper 32 bits of the system timer, is not available for stream reads. Note that when
streaming on the U6, the timing is known anyway (elapsed time = scan rate * scan number) and it
does not make sense to stream the system timer modes 10 or 11.

2.9.1.11 - Period Measurement (16-Bit, Modes
12 & 13) [U6 Datasheet]
Log in or register to post comments

Similar to the 32-bit edge-to-edge timing modes described above (modes 2 & 3), except that
hardware capture registers are used to record the edge times. This limits the times to 16-bit
values, but is accurate to the resolution of the clock, and not subject to any errors due to
firmware processing delays.

Note that the minimum measurable period is limited by the edge rate limit discussed in Section
2.9.2.

Edge Rate Limits

This edge-detecting timer mode requires processing resources as an interrupt is required to handle each edge. See

more about edge rate limits in Section 2.9.2.

19 May 2019

https://labjack.com/support/datasheets/u6/hardware-description/timers-counters/operation-notes
https://labjack.com/user/login?destination=node/1174%23comment-form
https://labjack.com/user/register?destination=node/1174%23comment-form
https://labjack.com/user/login?destination=node/1176%23comment-form
https://labjack.com/user/register?destination=node/1176%23comment-form
https://labjack.com/support/datasheets/u6/hardware-description/timers-counters/operation-notes

2.9.1.12 - Line-to-Line Measurement (Mode
14) [U6 Datasheet]
Log in or register to post comments

This timer mode requires firmware 1.16 or later.

Introduction:

The Line-to-Line timer mode uses two timers to measure the time between specified edges on
two different lines. For instance, you can measure the time between a rising edge on Timer0 and
a falling edge on Timer1. When the LabJack sees the specified edge on Timer0 it starts counting
until it sees the specified edge on Timer1. High resolution up to 20.8ns can be achieved with this
mode.

Line-to-Line mode is also available on timers 2 and 3.

Configuring:

To configure a LabJack for Line-to-Line mode set an even timer and the next (odd) timer to mode
14. The timer values determine the edge that the timer will respond to, 1 being rising, 0 being
falling. So, if Timer0's value is 0 and Timer1's is 1 then the LabJack will measure the time
between a falling edge on Timer0 to a rising edge on Timer1.

Readings:

Once configured the timer will return zero until both specified edges have been detected. The
time difference in TimerClock periods is then returned by both timers until they are reset. Both
timers will return the same reading, so it is only necessary to read one or the other. To convert to
time, divide the value returned by the timer clock. This mode returns 16-bit values, so care should
be taken to be sure that the specified condition does not exceed the maximum time. The
maximum time can be calculated by 65535/TimerClock, and resolution is 1/TimerClock, so some

19 May 2019

https://labjack.com/user/login?destination=node/1239%23comment-form
https://labjack.com/user/register?destination=node/1239%23comment-form

examples are:

TimerClock, MaxTime, Resolution
 48 MHz, 1.3ms, 20.8ns
 1 MHz, 65ms, 1µs
 3906 Hz, 16.7s, 256µs

Resetting:

Once a measurement has been acquired the even timer needs to be reset before the LabJack
will measure again. Values specified when resetting have no effect. Once reset the even timer
will return zero until a new measurement has been completed. Resetting the odd timer is
optional, if not reset it will continue to return the last measurement until a new one has been
completed.

2.9.2 - Timer Operation/Performance Notes
[U6 Datasheet]
Log in or register to post comments

Note that the specified timer clock frequency is the same for all timers. That is, TimerClockBase
and TimerClockDivisor are singular values that apply to all timers. Modes 0, 1, 2, 3, 4, 7, 12, and
13, all are affected by the clock frequency, and thus the simultaneous use of these modes has
limited flexibility. This is often not an issue for modes 2 and 3 since they use 32-bit registers.

The output timer modes (0, 1, and 7) are handled totally by hardware. Once started, no
processing resources are used and other U6 operations do not affect the output.

The edge-detecting timer input modes do require U6 processing resources, as an interrupt is
required to handle each edge. Timer modes 2, 3, 5, 6, 9, 12, and 13 must process every
applicable edge (rising or falling). Timer modes 4 and 8 must process every edge (rising and
falling). To avoid missing counts, keep the total number of processed edges (all timers) less than
30,000 per second. That means that in the case of a single timer, there should be no more than 1
edge per 33 µs. For multiple timers, all can process an edge simultaneously, but if for instance
both timers get an edge at the same time, 66 µs should be allowed before any further edges are
applied. If streaming is occurring at the same time, the maximum edge rate will be less (7,000
per second), and since each edge requires processing time the sustainable stream rates can also

19 May 2019

https://labjack.com/user/login?destination=node/965%23comment-form
https://labjack.com/user/register?destination=node/965%23comment-form

be reduced.
19 May 2019

	2.9 - Timers/Counters [U6 Datasheet]
	Timers / Counters Overview
	Timers
	Counters

	2.9.1 - Timer Mode Descriptions [U6 Datasheet]
	2.9.1.1 - PWM Output (16-Bit, Mode 0) [U6 Datasheet]
	2.9.1.2 - PWM Output (8-Bit, Mode 1) [U6 Datasheet]
	2.9.1.3 - Period Measurement (32-Bit, Modes 2 & 3) [U6 Datasheet]
	2.9.1.4 - Duty Cycle Measurement (Mode 4) [U6 Datasheet]
	2.9.1.5 - Firmware Counter Input (Mode 5) [U6 Datasheet]
	2.9.1.6 - Firmware Counter Input With Debounce (Mode 6) [U6 Datasheet]
	2.9.1.7 - Frequency Output (Mode 7) [U6 Datasheet]
	2.9.1.8 - Quadrature Input (Mode 8) [U6 Datasheet]
	2.9.1.9 - Timer Stop Input (Mode 9) [U6 Datasheet]
	2.9.1.10 - System Timer Low/High Read (Modes 10 & 11) [U6 Datasheet]
	2.9.1.11 - Period Measurement (16-Bit, Modes 12 & 13) [U6 Datasheet]
	2.9.1.12 - Line-to-Line Measurement (Mode 14) [U6 Datasheet]
	2.9.2 - Timer Operation/Performance Notes [U6 Datasheet]

